Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.202
Filtrar
1.
Int J Oncol ; 60(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35014676

RESUMO

Resistance to 5­Fluorouracil (5­FU) is a frequent occurrence in patients with colorectal cancer (CRC). MicroRNAs (miRNAs) from cancer­associated fibroblasts (CAFs)­secreted exosomes have been associated with 5­FU sensitivity. The potential molecular mechanism of CAFs­exosomal miRNAs in CRC remains unclear. The aim of the present study was to elucidate the role of exosomal miRNAs in 5­FU sensitivity in CRC. Exosomes derived from CAFs were extracted. Exosomal miR­181d­5p was identified as a miRNA associated with 5­FU sensitivity. The putative function of exosomal miR­181d­5p was evaluated by ethynyl­2­deoxyuridine staining, flow cytometry, RNA immunoprecipitation, luciferase reporter assay, tumor xenograft formation, reverse transcription­quantitative PCR and western blot analysis. Modification of miR­181d­5p by the RNA N6­methyladenosine (m6A) methyltransferase like (METTL)3 was examined by m6A methylation analysis. The results indicated that m6A modification and METTL3 expression were upregulated in CRC patients. METTL3­dependent m6A methylation promoted the miR­181b­5p process by DiGeorge Syndrome Critical Region 8 (DGCR8) in CAFs. CAFs­derived exosomes inhibited 5­FU sensitivity in CRC cells through the METTL3/miR­181d­5p axis. A mechanistic study revealed that miR­181d­5p directly targeted neurocalcin δ (NCALD) to inhibit the 5­FU sensitivity of CRC cells. Patients with higher NCALD levels exhibited a higher survival rate. Taken together, METTL3­dependent m6A methylation was upregulated in CRC to promote the processing of miR­181d­5p by DGCR8. This led to increased miR­181d­5p expression, which inhibited the 5­FU sensitivity of CRC cells by targeting NCALD. The results of the present study provided novel insight into exosomal microRNAs in 5­FU sensitivity in CRC cells. Furthermore, exosomal miR­181d­5p may represent a potential prognostic marker for CRC.


Assuntos
Adenosina/análogos & derivados , Fluoruracila/metabolismo , MicroRNAs/metabolismo , Neurocalcina/efeitos dos fármacos , Adenosina/genética , Adenosina/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , MicroRNAs/efeitos dos fármacos , Neurocalcina/metabolismo , Regulação para Cima/genética , Regulação para Cima/imunologia
2.
Int Immunopharmacol ; 104: 108502, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063743

RESUMO

BACKGROUND: SARS-CoV-2 infection can lead to the abnormal induction of cytokines and a dysregulated hyperinflammatory state that is implicated in disease severity and risk of death. There are several molecules present in blood associated with immune cellular response, inflammation, and oxidative stress that could be used as severity markers in respiratory viral infections such as COVID-19. However, there is a lack of clinical studies evaluating the role of oxidative stress-related molecules including glial fibrillary acidic protein (GFAP), the receptor for advanced glycation end products (RAGE), high mobility group box-1 protein (HMGB1) and cyclo-oxygenase-2 (COX-2) in COVID-19 pathogenesis. AIM: To evaluate the role of oxidative stress-related molecules in COVID-19. METHOD: An observational study with 93 Brazilian participants from September 2020 to April 2021, comprising 23 patients with COVID-19 admitted to intensive care unit (ICU), 19 outpatients with COVID-19 with mild to moderate symptoms, 17 individuals reporting a COVID-19 history, and 34 healthy controls. Blood samples were taken from all participants and western blot assay was used to determine the RAGE, HMGB1, GFAP, and COX-2 immunocontent. RESULTS: We found that GFAP levels were higher in patients with severe or critical COVID-19 compared to outpatients (p = 0.030) and controls (p < 0.001). A significant increase in immunocontents of RAGE (p < 0.001) and HMGB1 (p < 0.001) were also found among patients admitted to the ICU compared to healthy controls, as well as an overexpression of the inducible COX-2 (p < 0.001). In addition, we found a moderate to strong correlation between RAGE, GFAP and HMGB1 proteins. CONCLUSION: SARS-CoV-2 infection induces the upregulation of GFAP, RAGE, HMGB1, and COX-2 in patients with the most severe forms of COVID-19.


Assuntos
COVID-19/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Estudos de Casos e Controles , Criança , Ciclo-Oxigenase 2/sangue , Ciclo-Oxigenase 2/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/sangue , Proteína Glial Fibrilar Ácida/metabolismo , Proteína HMGB1/sangue , Proteína HMGB1/metabolismo , Voluntários Saudáveis , Humanos , Inflamação/sangue , Inflamação/diagnóstico , Inflamação/imunologia , Inflamação/virologia , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/imunologia , Receptor para Produtos Finais de Glicação Avançada/sangue , Receptor para Produtos Finais de Glicação Avançada/metabolismo , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Regulação para Cima/imunologia , Adulto Jovem
3.
Med Oncol ; 39(3): 32, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35059896

RESUMO

To investigate the effects of isolated SARS-CoV-2 spike protein on prostate cancer cell survival. The effects of SARS-CoV-2 spike protein on LNCaP prostate cancer cell survival were assessed using clonogenic cell survival assay, quick cell proliferation assay, and caspase-3 activity kits. RT-PCR and immunohistochemistry were performed to investigate underlying molecular mechanisms. SARS-CoV-2 spike protein was found to inhibit prostate cancer cell proliferation as well as promote apoptosis. Further investigation revealed that anti-proliferative effects were associated with downregulation of the pro-proliferative molecule cyclin-dependent kinase 4 (CDK4). The increased rate of apoptosis was associated with the upregulation of pro-apoptotic molecule Fas ligand (FasL). SARS-CoV-2 spike protein inhibits the growth of LNCaP prostate cancer cells in vitro by a two-pronged approach of downregulating the expression of CDK4 and upregulating FasL. The introduction of SARS-CoV-2 spike protein into the body via COVID-19 vaccination may have the potential to inhibit prostate cancer in patients. This potential beneficial association between COVID-19 vaccines and prostate cancer inhibition will require more extensive studies before any conclusions can be drawn about any in vivo effects in a human model.


Assuntos
Vacinas contra COVID-19/imunologia , Proliferação de Células/fisiologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Antivirais/imunologia , Apoptose/imunologia , COVID-19/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Regulação para Baixo/imunologia , Humanos , Masculino , Regulação para Cima/imunologia , Vacinação/métodos
4.
BMC Cancer ; 22(1): 100, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073851

RESUMO

BACKGROUND: Platinum chemoresistance results in high-grade serous ovarian cancer (HGSOC) disease recurrence. Recent treatment advances using checkpoint inhibitor immunotherapy has not benefited platinum-resistant HGSOC. In ovarian cancer, DNA methyltransferase inhibitors (DNMTi) block methylation and allow expression of silenced genes, primarily affecting immune reactivation pathways. We aimed to determine the epigenome and transcriptome response to sequential treatment with DNMTi and carboplatin in HGSOC. METHODS: In vitro studies with azacitidine or carboplatin alone and in sequential combination. Response was determined by cell growth, death and apoptosis. Genome-wide DNA methylation levels and transcript expression were compared between untreated and azacitidine and carboplatin sequential treatment. RESULTS: Sequential azacitidine and carboplatin significantly slowed cell growth in 50% of cell lines compared to carboplatin alone. The combination resulted in significantly higher cell death in 25% of cell lines, and significantly higher cell apoptosis in 37.5% of cell lines, than carboplatin alone. Pathway analysis of upregulated transcripts showed that the majority of changes were in immune-related pathways, including those regulating response to checkpoint inhibitors. CONCLUSIONS: Sequential azacitidine and carboplatin treatment slows cell growth, and demethylate and upregulate pathways involved in immune response, suggesting that this combination may be used to increase HGSOC response to immune checkpoint inhibitors in platinum-resistant patients who have exhausted all currently-approved avenues of treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Azacitidina/administração & dosagem , Carboplatina/administração & dosagem , Imunidade/efeitos dos fármacos , Neoplasias Císticas, Mucinosas e Serosas/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/imunologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/imunologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Gradação de Tumores , Neoplasias Císticas, Mucinosas e Serosas/imunologia , Neoplasias Ovarianas/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
5.
Mol Immunol ; 141: 297-304, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915269

RESUMO

B cells play multiple roles in preservation of healthy immune system including management of immune responses by expression of pro- and anti-inflammatory cytokines. Several earlier studies have documented that B cells express both pro-inflammatory cytokines such as IL-6, TNF-α as well as anti-inflammatory cytokines such as IL-10. However, it is yet to be examined whether these pro-/anti-inflammatory cytokines are expressed in B cells of children with autism spectrum disorder (ASD). Pathophysiology of ASD begins in early childhood and is characterized by repetitive/restricted behavioral patterns, and dysfunction in communal/communication skills. ASD pathophysiology also has a strong component of immune dysfunction which has been highlighted in numerous earlier publications. In this study, we specifically explored pro-/anti-inflammatory cytokines (IL-6, IL-17A, IFN-γ, TNF-α, IL-10) in B cells of ASD subjects and compared them typically developing control (TDC) children. Present study shows that inflammatory cytokines such as IL-6 and TNF-α are elevated in B cells of ASD subjects, while anti-inflammatory cytokine, IL-10 is decreased in ASD group when compared to TDC group. Further, TLR4 activation by its ligand, lipopolysaccharide (LPS) further upregulates inflammatory potential of B cells from ASD group by increasing IL-6 expression, whereas LPS has no significant effect on IL-10 expression in ASD group. Furthermore, LPS-induced inflammatory signaling of IL-6 in B cells of ASD subjects was partially mitigated by the pretreatment with NF-kB inhibitor. Present study propounds the idea that B cells could be crucial players in causing immune dysfunction in ASD subjects through an imbalance in expression of pro-/anti-inflammatory cytokines.


Assuntos
Anti-Inflamatórios/imunologia , Transtorno do Espectro Autista/imunologia , Transtorno Autístico/imunologia , Linfócitos B/imunologia , Citocinas/imunologia , Inflamação/imunologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Imunidade/imunologia , Masculino , Monócitos/imunologia , Transdução de Sinais/imunologia , Regulação para Cima/imunologia
6.
Eur J Immunol ; 52(1): 138-148, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34676541

RESUMO

The interferon pathway, a key antiviral defense mechanism, is being considered as a therapeutic target in COVID-19. Both, substitution of interferon and JAK/STAT inhibition to limit cytokine storms have been proposed. However, little is known about possible abnormalities in STAT signaling in immune cells during SARS-CoV-2 infection. We investigated downstream targets of interferon signaling, including STAT1, STAT2, pSTAT1 and 2, and IRF1, 7 and 9 by flow cytometry in 30 patients with COVID-19, 17 with mild, and 13 with severe infection. We report upregulation of STAT1 and IRF9 in mild and severe COVID-19 cases, which correlated with the IFN-signature assessed by Siglec-1 (CD169) expression on peripheral monocytes. Interestingly, Siglec-1 and STAT1 in CD14+ monocytes and plasmablasts showed lower expression among severe cases compared to mild cases. Contrary to the baseline STAT1 expression, the phosphorylation of STAT1 was enhanced in severe COVID-19 cases, indicating a dysbalanced JAK/STAT signaling that fails to induce transcription of interferon stimulated response elements (ISRE). This abnormality persisted after IFN-α and IFN-γ stimulation of PBMCs from patients with severe COVID-19. Data suggest impaired STAT1 transcriptional upregulation among severely infected patients may represent a potential predictive biomarker and would allow stratification of patients for certain interferon-pathway targeted treatments.


Assuntos
COVID-19/imunologia , Monócitos/imunologia , SARS-CoV-2/imunologia , Fator de Transcrição STAT1/imunologia , Transdução de Sinais/imunologia , Regulação para Cima/imunologia , Adulto , Idoso , Feminino , Humanos , Fatores Reguladores de Interferon/imunologia , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Fosforilação/imunologia
7.
Front Immunol ; 12: 785463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887871

RESUMO

Background: Checkpoint blockade therapies targeting programmed death ligand 1 (PD-L1) and its receptor programmed cell death 1 promote T cell-mediated immune surveillance against tumors and have been associated with significant clinical benefit in cancer patients. The long-stranded non-coding RNA HOTAIR is highly expressed and associated with metastasis in a variety of cancer types and promotes tumor metastasis at least in part through association with the PRC2 complex that induces redirection to hundreds of genes involved in tumor metastasis. Here, we report that HOTAIR is an activator lncRNA of the NF-κB pathway and demonstrate that its apparent upregulation promotes inflammatory signaling and immune escape in glioma cells. Methods: Bioinformatics analysis was used to elucidate the relationship between HOTAIR and NF-κB pathway in HOTAIR knockdown glioma cells. At the cytological level, protein hybridization and immunofluorescence were used to detect the response of proteins in the NF-κB signaling pathway to HOTAIR regulation. ChIP and ChIRP experiments identified HOTAIR target genes. Animal experiments verified alterations in inflammation and immune escape following HOTAIR knockdown and activity inhibition. Results: HOTAIR activated the expression of proteins involved in NF-κB, TNFα, MAPK and other inflammatory signaling pathways. In addition, HOTAIR induced various proteins containing protein kinase structural domains and promoted the enrichment of proteins and complexes of important inflammatory signaling pathways, such as the TNFα/NF-κB signaling protein complex, the IκB kinase complex, and the IKKA-IKKB complex. In addition, HOTAIR aberrantly activated biological processes involved in glioma immune responses, T-cell co-stimulation and transcription initiation by RNA polymerase II. HOTAIR facilitated the induction of IκBα phosphorylation by suppressing the expression of the NF-κB upstream protein UBXN1, promoting NF-κB phosphorylation and nuclear translocation. In vivo, reduction of HOTAIR decreased PD-L1 protein expression, indicating that cells are more likely to be targeted by immune T cells. Conclusion: In conclusion, our results provide convincing evidence that lncRNA HOTAIR drives aberrant gene transcription and immune escape from tumor cells through the NF-κB pathway.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , NF-kappa B/metabolismo , RNA Longo não Codificante/metabolismo , Evasão Tumoral/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Glioma/imunologia , Glioma/patologia , Humanos , Camundongos , RNA Longo não Codificante/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Regulação para Cima/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Front Immunol ; 12: 703936, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737736

RESUMO

Non-coding RNAs (ncRNAs) including microRNAs (miRs) and long non-coding RNAs (lncRNAs) have emerged as key regulators of gene expression in immune cells development and function. Their expression is altered in different physiological and disease conditions, hence making them attractive targets for the understanding of disease etiology and the development of adjunctive control strategies, especially within the current context of mitigated success of control measures deployed to eradicate these diseases. In this review, we summarize our current understanding of the role of ncRNAs in the etiology and control of major human tropical diseases including tuberculosis, HIV/AIDS and malaria, as well as neglected tropical diseases including leishmaniasis, African trypanosomiasis and leprosy. We highlight that several ncRNAs are involved at different stages of development of these diseases, for example miR-26-5p, miR-132-3p, miR-155-5p, miR-29-3p, miR-21-5p, miR-27b-3p, miR-99b-5p, miR-125-5p, miR-146a-5p, miR-223-3p, miR-20b-5p, miR-142-3p, miR-27a-5p, miR-144-5p, miR-889-5p and miR-582-5p in tuberculosis; miR-873, MALAT1, HEAL, LINC01426, LINC00173, NEAT1, NRON, GAS5 and lincRNA-p21 in HIV/AIDS; miR-451a, miR-let-7b and miR-106b in malaria; miR-210, miR-30A-5P, miR-294, miR-721 and lncRNA 7SL RNA in leishmaniasis; and miR-21, miR-181a, miR-146a in leprosy. We further report that several ncRNAs were investigated as diseases biomarkers and a number of them showed good potential for disease diagnosis, including miR-769-5p, miR-320a, miR-22-3p, miR-423-5p, miR-17-5p, miR-20b-5p and lncRNA LOC152742 in tuberculosis; miR-146b-5p, miR-223, miR-150, miR-16, miR-191 and lncRNA NEAT1 in HIV/AIDS; miR-451 and miR-16 in malaria; miR-361-3p, miR-193b, miR-671, lncRNA 7SL in leishmaniasis; miR-101, miR-196b, miR-27b and miR-29c in leprosy. Furthermore, some ncRNAs have emerged as potential therapeutic targets, some of which include lncRNAs NEAT1, NEAT2 and lnr6RNA, 152742 in tuberculosis; MALAT1, HEAL, SAF, lincRNA-p21, NEAT1, GAS5, NRON, LINC00173 in HIV/AIDS; miRNA-146a in malaria. Finally, miR-135 and miR-126 were proposed as potential targets for the development of therapeutic vaccine against leishmaniasis. We also identify and discuss knowledge gaps that warrant for increased research work. These include investigation of the role of ncRNAs in the etiology of African trypanosomiasis and the assessment of the diagnostic potential of ncRNAs for malaria, and African trypanosomiasis. The potential targeting of ncRNAs for adjunctive therapy against tuberculosis, leishmaniasis, African trypanosomiasis and leprosy, as well as their targeting in vaccine development against tuberculosis, HIV/AIDS, malaria, African trypanosomiasis and leprosy are also new avenues to explore.


Assuntos
MicroRNAs/imunologia , Doenças Negligenciadas , RNA Longo não Codificante/imunologia , Regulação para Cima/imunologia , Desenvolvimento de Vacinas , Proliferação de Células , Humanos , Doenças Negligenciadas/imunologia , Doenças Negligenciadas/prevenção & controle
9.
Bioengineered ; 12(2): 9610-9624, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719321

RESUMO

This research revealed that 15 modules were obtained through weighted gene co-expression network analysis, among which the magenta and blue modules were significantly associated with Alzheimer's Disease (AD). There were 121 genes in the magenta module and 1022 genes in the blue module. Through differently expressed genes analysis, significant differences were shown in 134 genes (88 were up-regulated and 46 were down-regulated). 34 immune-key genes were obtained after three types of genes were crossed. Functional enrichment analysis showed that genes were mainly enriched in cytokine receptor activity and immune receptor activity. Through protein-protein interaction (PPI) network analysis, 10 hub genes were obtained: SERPINE1, ZBTB16, CD44, BCL6, HMOX1, SLC11A1, CEACAM8, ITGA5, SOCS3, and IL4R. Through immune-infiltration analysis, significant differences were demonstrated in four immune cells: CD8 + T cells, resting NK cells, M2 macrophages, and activated dendritic cells, and a significant positive correlation was shown between CD8 + T cells and macrophages M2, or between the other two cells. CEACAM8 was positively correlated with CD8 + T cells and macrophages M2, and negatively correlated with the other two cells while the remaining nine genes showed the opposite. Receiver operating characteristic (ROC) curve analysis demonstrated that both the differential immune cells and 10 hub genes had good diagnostic values. In GSE122063, the hub genes were verified and BCL6, CD44, HMOX1, IL4R, ITGA5, and SOCS3 were up-regulated. Meanwhile, hub genes was up-regulated in the brain tissues of AD rats. This study is of great significance for the diagnosis and therapy of AD.


Assuntos
Doença de Alzheimer/imunologia , Regulação para Baixo/imunologia , Redes Reguladoras de Genes/imunologia , Mapas de Interação de Proteínas/imunologia , Regulação para Cima/imunologia , Doença de Alzheimer/genética , Animais , Perfilação da Expressão Gênica , Masculino , Ratos
10.
Int J Biol Macromol ; 193(Pt B): 2290-2296, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798192

RESUMO

Zika virus (ZIKV) is a positive-single strand RNA virus that belongs to the Flaviviridae family. ZIKV infection causes congenital ZIKV syndrome (CZS) in children and Guillain Barre Syndrome (GBS) in adults. ZIKV infected cells secrete non-structural protein 1 (sNS1), which plays an important role in viral replication and immune evasion. The microglial cells are the brain resident macrophages that mediate the immune responses in CNS. The miRNAs are small non-coding RNAs that regulate the expression of their target genes by binding to the 3'UTR region. The present study highlights the bystander effect of ZIKV-NS1 via miR-146a. The Real-Time PCR, Immunoblotting, overexpression, knockdown studies, and reactive oxygen species measurement have been done to study the immunomodulatory effects of ZIKV-NS1 in human microglial cells. ZIKV-NS1 induced the expression of miR-146a and suppressed the ROS activity in human microglial cells. The up-regulated miR-146a led to the decreased expression of TRAF6 and STAT-1. The reduced expression of TRAF6 in turn led to the suppression of pNF-κBp65 and TNF-α downstream. The miR-146a suppressed the pro-inflammatory and cellular antiviral responses in microglial cells. Our findings demonstrate the bystander role of ZIKV-NS1 in suppressing the pro-inflammatory and cellular antiviral responses through miR-146a in human microglial cells.


Assuntos
Imunidade Inata/imunologia , MicroRNAs/imunologia , Microglia/imunologia , Proteínas não Estruturais Virais/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Regiões 3' não Traduzidas/imunologia , Células Cultivadas , Citocinas/imunologia , Humanos , Microglia/virologia , RNA Mensageiro/imunologia , Transdução de Sinais/imunologia , Fator 6 Associado a Receptor de TNF/imunologia , Regulação para Cima/imunologia , Replicação Viral/imunologia , Infecção por Zika virus/virologia
11.
PLoS One ; 16(11): e0260188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793556

RESUMO

Chronic inflammation can cause oviduct mucosal damage and immune dysfunction, leading to infertility, early pregnancy loss, ectopic pregnancy, tumors, and a decrease in reproductive capacities in female animals. Estrogen can suppress immune responses in different tissues and oviducts, and regulate the oviduct immune balance; however, the underlying mechanisms remain unclear. The objective of this study was to explore the mechanism of estrogen-regulated oviduct mucosal immunity and discover new estrogen targets for regulating oviduct mucosal immune homeostasis. Sheep oviduct epithelial cells (SOECs) were treated with 17-ß estradiol (E2). Transcriptome sequencing and analysis showed differentially expressed S100 calcium-binding protein A (S100A) genes that may participate in the oviduct mucosa immunoregulation of estrogen. Quantitative polymerase chain reaction and immunocytochemistry analysis showed that S100A8 expression changed dynamically in E2-treated SOECs and peaked after 7 h of treatment. Estrogen nuclear receptors and G protein-coupled membrane receptors promoted E2-dependent S100A8 upregulation. The S100A8 gene was disrupted using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 method. Levels of inflammatory factors interleukin (IL)-1ß and IL-4 were significantly upregulated in S100A8-knockdown SOECs, whereas those of the anti-inflammatory factor IL-10 was downregulated. Following S100A8 knockdown in SOECs treated with E2 for 7 h, IL-10 levels increased significantly. Estrogen affected oviduct mucosa immune function and dynamically regulated S100A8 in SOECs. S100A8 knockdown caused an excessive immune response, indicating that S100A8 is beneficial for maintaining immune homeostasis in the oviduct mucosa. Moreover, estrogen can compensate for the effect of S100A8 knockdown by upregulating IL-10.


Assuntos
Calgranulina A/metabolismo , Células Epiteliais/metabolismo , Estrogênios/metabolismo , Homeostase/imunologia , Imunidade/imunologia , Mucosa/metabolismo , Oviductos/metabolismo , Animais , Calgranulina A/imunologia , Células Epiteliais/imunologia , Estradiol/imunologia , Estradiol/metabolismo , Estrogênios/imunologia , Feminino , Mucosa/imunologia , Oviductos/imunologia , Ovinos/imunologia , Ovinos/metabolismo , Regulação para Cima/imunologia
12.
J Immunol ; 207(11): 2770-2784, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34697227

RESUMO

Circular RNAs (circRNAs) are a subgroup of endogenous noncoding RNA that is covalently closed rings and widely expressed. In recent years, there is accumulating evidence indicating that circRNAs are a class of important regulators, which play an important role in various biological processes. However, the biological functions and regulation mechanism of circRNAs in lower vertebrates are little known. In this study, we discovered a circRNA Samd4a (circSamd4a) that is related to the antiviral immune response of teleost fish. It can act as a key regulator of the host's antiviral response and play a key role in inhibiting Sininiperca chuatsi rhabdovirus replication. Further studies have shown that circSamd4a may act as a competing endogenous RNA, which can enhance the STING-mediated NF-κB/IRF3 signaling pathway by adsorbing miR-29a-3p, thereby enhancing the antiviral immune response. Therefore, circSamd4a plays an active regulatory role in the antiviral immune response of bony fish. Our research results provide a strong foundation for circular RNA to play a regulatory role in the antiviral immune response of teleost fish.


Assuntos
Interferons/imunologia , MicroRNAs/imunologia , RNA Circular/imunologia , Regulação para Cima/imunologia , Animais , Células Cultivadas , Perciformes
13.
Aging Cell ; 20(11): e13507, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34705313

RESUMO

Previous studies have shown that long-term light or moderate fasting such as intermittent fasting can improve health and prolong lifespan. However, in humans short-term intensive fasting, a complete water-only fasting has little been studied. Here, we used multi-omics tools to evaluate the impact of short-term intensive fasting on immune function by comparison of the CD45+ leukocytes from the fasting subjects before and after 72-h fasting. Transcriptomic and proteomic profiling of CD45+ leukocytes revealed extensive expression changes, marked by higher gene upregulation than downregulation after fasting. Functional enrichment of differentially expressed genes and proteins exposed several pathways critical to metabolic and immune cell functions. Specifically, short-term intensive fasting enhanced autophagy levels through upregulation of key members involved in the upstream signals and within the autophagy machinery, whereas apoptosis was reduced by down-turning of apoptotic gene expression, thereby increasing the leukocyte viability. When focusing on specific leukocyte populations, peripheral neutrophils are noticeably increased by short-term intensive fasting. Finally, proteomic analysis of leukocytes showed that short-term intensive fasting not only increased neutrophil degranulation, but also increased cytokine secretion. Our results suggest that short-term intensive fasting boost immune function, in particular innate immune function, at least in part by remodeling leukocytes expression profile.


Assuntos
Jejum/sangue , Imunidade Inata , Neutrófilos/imunologia , Proteoma/imunologia , Transcriptoma/imunologia , Adolescente , Adulto , Idoso , Apoptose/genética , Apoptose/imunologia , Autofagia/genética , Autofagia/imunologia , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Antígenos Comuns de Leucócito/metabolismo , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Regulação para Cima/genética , Regulação para Cima/imunologia , Adulto Jovem
14.
Int Immunopharmacol ; 101(Pt A): 107585, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601333

RESUMO

OBJECTIVE: Accumulating evidence has suggested that microRNAs (miRNAs) derived from M2 macrophage-derived exosomes (M2 exosomes) can regulate the progression of hepatocellular carcinoma (HCC). Nevertheless, the effect of miR-27a-3p derived from M2 exosomes on HCC has not been reported. We aim to explore the role of M2 exosomal miR-27a-3p in the cancer stemness of HCC via regulating thioredoxin-interacting protein (TXNIP). METHODS: Exosomes were extracted from transfected M2 macrophages and were then co-cultured with HCC cells. Expression of miR-27a-3p and TXNIP, stemness, proliferation, drug resistance, migration, invasion and in vivo tumorigenicity of HCC cells were determined to assess the role of M2 exosomal miR-27a-3p in HCC. The binding relationship between miR-27a-3p and TXNIP was detected. RESULTS: MiR-27a-3p was upregulated and TXNIP was downregulated in HCC cells, and M2 exosomes further upregulated miR-27a-3p. The upregulated M2 exosomal miR-27a-3p promoted stemness, proliferation, drug resistance, migration, invasion and in vivo tumorigenicity of HCC cells. TXNIP was confirmed as a target gene of miR-27a-3p. CONCLUSION: M2 macrophages-derived exosomal miR-27a-3p promotes cancer stemness of HCC via downregulating TXNIP.


Assuntos
Carcinoma Hepatocelular/genética , Proteínas de Transporte/genética , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação para Baixo/imunologia , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Regulação para Cima/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int Immunopharmacol ; 101(Pt A): 108262, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34688135

RESUMO

miR-124 is ubiquitously expressed in the nervous tissue and acts as a negative regulator of neuroinflammation. In the present study, we analyzed the possible role of miR-124 in response to LPS in the human microglial cell line. Our data revealed that the miR-124 anti-inflammatory effect is based not only on the suppression of MyD88 - NFκB pathway and downregulation of pro-inflammatory cytokines IL-1ß and IL-6 but also on the enhancement of TRAM-TRIF signaling and increased IFN-ß expression. Furthermore, the NFκB reporter assay demonstrated that specific miR-124 - induced NFκB activity changes could be detected only using NFκB reporter promoters lacking ATF/CREB binding site.


Assuntos
Interferon beta/genética , MicroRNAs/metabolismo , Microglia/imunologia , Linhagem Celular , Humanos , Interferon beta/metabolismo , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , MicroRNAs/agonistas , Microglia/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
16.
J Immunol Res ; 2021: 5857214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692852

RESUMO

Accumulating evidence has elucidated the biological function of lncRNAs in various tumors. FGD5 antisense RNA 1 (FGD5-AS1) is identified as a significant tumor regulator in malignancies. Up to now, the detailed function of FGD5-AS1 in cervical cancer and its underlying molecular mechanisms remain uninvestigated. Bone marrow stromal cell antigen 2 (BST2) can play critical roles in immune response, and the roles of BST2 in cervical cancer was explored currently. The level of FGD5-AS1 and BST2 was detected by qRT-PCR in cervical cancer cells. FGD5-AS1 and BST2 expression was significantly upregulated in cervical cancer cells. Then, the decrease of FGD5-AS1 greatly repressed cervical cancer cell growth in vitro. In addition, FGD5-AS1 silencing repressed BST2 expression and suppressed M2 macrophage polarization. Mechanistically, we confirmed that FGD5-AS1 sponged miR-129-5p to reduce its inhibition on BST2. Furthermore, lack of BST2 depressed cervical cancer cell growth, while inducing apoptosis. Loss of BST2 induced M1 macrophage polarization while blocking M2 macrophage polarization. For another, we demonstrated that FGD5-AS1-triggered M2 macrophage polarization was remarkably reversed by miR-129-5p via suppressing BST2. In conclusion, FGD5-AS1 induced M2 macrophage polarization via sponging miR-129-5p and modulating BST2, thus contributing to cervical cancer development. Our findings revealed FGD5-AS1/miR-129-5p/BST2 as a new potential target for cervical cancer.


Assuntos
Antígenos CD/genética , Macrófagos/imunologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias do Colo do Útero/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Feminino , Proteínas Ligadas por GPI/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Humanos , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Invasividade Neoplásica/genética , RNA Longo não Codificante/genética , Regulação para Cima/imunologia , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/patologia
17.
Genes (Basel) ; 12(9)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34573352

RESUMO

The function of the immune system extends from defense against external pathogens to the recognition and elimination of mutated or dying cells, aiding elimination of malignant potential and/or maintaining homeostasis. The many cell types of the immune system secrete a broad range of factors to enable cellular signaling that is vital to physiological processes. Additionally, in the ovary, follicular selection and maturation, as well as ovulation, are directly regulated by the nearby immune cells. Additionally, ovulation and rupture of the follicle have been observed to resemble a local inflammatory response. Cells of the cumulus-oocyte complex (COC) show evolving gene expression profiles throughout the oocytes' lifespan, including genes associated with immunological processes. Analysis of these genes allows the identification of useful molecular markers, as well as highlighting gene functions and interactions in these cells. Cumulus cells were obtained from hormonally stimulated patients undergoing an in vitro fertilization procedure and studied under long-term culture conditions. The microarray technique made it possible to compare the level of CCs' gene expression on the 1st, 7th, 15th and 30th day of cultivation. Additionally, RNA microarray analysis was performed to map gene expression in these cells, associated with immunological processes and associated cytokine signaling. Subsequently, the use of DAVID software allowed us to identify the "defense response to other organism", "defense response", "defense response to virus", "cytokine secretion", "cytokine production" and "cytokine-mediated signaling pathway" GO BP terms, as well as allowing further analysis of the most differentially expressed genes associated with these processes. Of the 122 genes involved, 121 were upregulated and only one was downregulated. The seven most upregulated genes related to the abovementioned terms were ANXA3, IFIT1, HLA-DPA1, MX1, KRT8, HLA-DRA and KRT18. Therefore, genes involved in immunological defense processes are upregulated in CC cultures and could serve as useful molecular markers of growth and development in the COC, as well as the proliferation of granulosa and cumulus cells.


Assuntos
Células do Cúmulo/imunologia , Citocinas/metabolismo , Imunidade/genética , Oócitos/imunologia , Ovulação/imunologia , Adulto , Proliferação de Células/genética , Células Cultivadas , Células do Cúmulo/metabolismo , Feminino , Fertilização In Vitro , Perfilação da Expressão Gênica , Humanos , Oócitos/metabolismo , Ovulação/genética , Indução da Ovulação , Cultura Primária de Células , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Regulação para Cima/imunologia
18.
Sci Rep ; 11(1): 19263, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584119

RESUMO

Urinary tract infection frequently caused by E. coli is one of the most common bacterial infections. Increasing antibiotic resistance jeopardizes successful treatment and alternative treatment strategies are therefore mandatory. Metformin, an oral antidiabetic drug, has been shown to activate macrophages in the protection against certain infecting microorganisms. Since epithelial cells often form the first line of defense, we here investigated the effect on uroepithelial cells during E. coli infection. Metformin upregulated the human antimicrobial peptides cathelicidin LL-37 and RNase7 via modulation of the TRPA1 channel and AMPK pathway. Interestingly, metformin stimulation enriched both LL-37 and TRPA1 in lysosomes. In addition, metformin specifically increased nitric oxide and mitochondrial, but not cytosolic ROS. Moreover, metformin also triggered mRNA expression of the proinflammatory cytokines IL1B, CXCL8 and growth factor GDF15 in human uroepithelial cells. The GDF15 peptide stimulated macrophages increased LL-37 expression, with increased bacterial killing. In conclusion, metformin stimulation strengthened the innate immunity of uroepithelial cells inducing enhanced extracellular and intracellular bacterial killing suggesting a favorable role of metformin in the host defense.


Assuntos
Infecções por Escherichia coli/tratamento farmacológico , Metformina/farmacologia , Infecções Urinárias/tratamento farmacológico , Urotélio/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Linhagem Celular , Citocinas/metabolismo , Reposicionamento de Medicamentos , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Humanos , Imunidade Inata/efeitos dos fármacos , Metformina/uso terapêutico , Ribonucleases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Canal de Cátion TRPA1/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia , Infecções Urinárias/imunologia , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/imunologia , Urotélio/imunologia , Urotélio/microbiologia , Catelicidinas
19.
Sci Rep ; 11(1): 19204, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584171

RESUMO

Schizophrenia (SZ) and major depressive disorder (MDD) are severe mental disorders, which have been associated with alterations of the peripheral inflammatory network. However, studies for both disorders have not been fully consistent and have focused on few canonical markers with high relevance to the innate immune system, while the role of the adaptive immune system is studied less. Furthermore, it is unclear to what extent inflammatory abnormalities are diagnosis-specific or transdiagnostic. The purpose of this study was to investigate 75 peripheral inflammatory markers including the acute phase protein high-sensitivity C-reactive protein (hsCRP) in patients with MDD (n = 37), SZ (n = 42) and healthy controls (HC) (n = 17), while considering possible confounders and correcting rigorously for multiple testing in group comparisons. We identified C-C chemokine ligand 20 (CCL20) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as the inflammatory markers with significant group differences after controlling for multiple comparisons and adjusting for BMI, sex and smoking as confounders. TRAIL was elevated in both MDD and SZ compared to HC. CCL20 was specifically increased in SZ compared to MDD and HC. There were no significant group differences in hsCRP after correcting for multiple testing. Finally, we observed no significant correlations among CCL20, TRAIL and CRP. TRAIL is a transdiagnostic marker for SZ and MDD, with both markers being independent from CRP and body mass index (BMI). CCL20 may be a novel and specific biomarker of schizophrenia, but an influence of antipsychotic medication cannot be excluded. Identifying novel markers in mental disease bears the potential for future research towards novel treatment strategies by modifying inflammation-related processes.


Assuntos
Quimiocina CCL20/metabolismo , Transtorno Depressivo Maior/diagnóstico , Esquizofrenia/diagnóstico , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Estudos de Casos e Controles , Quimiocina CCL20/sangue , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/imunologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/sangue , Esquizofrenia/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/sangue , Regulação para Cima/imunologia , Adulto Jovem
20.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576032

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic with high infectivity and mortality has caused severe social and economic impacts worldwide. Growing reports of COVID-19 patients with multi-organ damage indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) may also disturb the cardiovascular system. Herein, we used human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) as the in vitro platform to examine the consequence of SARS-CoV2 infection on iCMs. Differentiated iCMs expressed the primary SARS-CoV2 receptor angiotensin-converting enzyme-II (ACE2) and the transmembrane protease serine type 2 (TMPRSS2) receptor suggesting the susceptibility of iCMs to SARS-CoV2. Following the infection of iCMs with SARS-CoV2, the viral nucleocapsid (N) protein was detected in the host cells, demonstrating the successful infection. Bioinformatics analysis revealed that the SARS-CoV2 infection upregulates several inflammation-related genes, including the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The pretreatment of iCMs with TNF-α for 24 h, significantly increased the expression of ACE2 and TMPRSS2, SASR-CoV2 entry receptors. The TNF-α pretreatment enhanced the entry of GFP-expressing SARS-CoV2 pseudovirus into iCMs, and the neutralization of TNF-α ameliorated the TNF-α-enhanced viral entry. Collectively, SARS-CoV2 elevated TNF-α expression, which in turn enhanced the SARS-CoV2 viral entry. Our findings suggest that, TNF-α may participate in the cytokine storm and aggravate the myocardial damage in COVID-19 patients.


Assuntos
COVID-19/complicações , Doenças Cardiovasculares/imunologia , Síndrome da Liberação de Citocina/imunologia , SARS-CoV-2/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Doenças Cardiovasculares/virologia , Diferenciação Celular , Linhagem Celular , Biologia Computacional , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/virologia , Humanos , Células-Tronco Pluripotentes Induzidas , Miocárdio/citologia , Miocárdio/imunologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/virologia , Fosfoproteínas/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Regulação para Cima/imunologia , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...